Mountain Waters-Uneasy Questions

Sep 26th, 2011 | By | Category: Adaptation, Advocacy, Bhutan, Climatic Changes in Himalayas, Development and Climate Change, Ecosystem Functions, Environment, Glaciers, India, Land, Lessons, M-20 CAMPAIGN, Nepal, Opinion, Pakistan, Rainfall, Research, Resilience, River, Water, Weather, Youth Speak

Pabitra Mukhopadhyay:Water as a resource from management perspective needs to be managed in the mountains very differently as compared to plains. This requires handling few uneasy questions. This essay attempts to see water management of the HKH debunked from global culture]

If you live in Hindu Kush Himalayas, most likely you have grown stoic to difficulties pertaining to access, supply and distribution of water – the most basic and ubiquitous element of life. If you are from a given economic stratum of society, you have probably come to take it as your destiny and your enterprise is almost entirely spent in keeping your life functional in the backdrop of a fast urbanization, where buying a better mobile phone is a legitimate aspiration rather than having two more buckets of clean water for your biological needs. May be we are avoiding the questions because they are uneasy. But it’s a staggering truth that these questions and their answers determine the lives of 210 million people in HKH and 1.2 billion people downstream (ICIMOD, World Water Week 2011 document).

The Himalayas have a total glaciated area of 33,000 sq. km (Eriksson et. Al, 2009) storing about 12,000 cu. Km of freshwater. This gives it a name (rightly) the third pole and water tower of Asia. The HKH nourishes two of the world’s greatest basins namely the Indus in the west containing the Jhelum, the Chenab, the Ravi, the Beas, and the Sutlej rivers, among others and Ganga-Brahmaputra containing the Ganges, the Brahmaputra and the Yamuna, among others. If we exclude the Salween, Mekong, Yangtze and the Huang He as distinct from Himalayan Rivers (these rivers originate from Tibetan Plateau), the HKH rivers constitutes important parts of river resources of India, Pakistan, Bangladesh, Nepal and Bhutan. It is a very uneasy question why Himalayan people, sitting within such huge water store need to suffer water scarcity at the first place.

The water is mostly stored as glacial ice at 5000 m above sea level, where it is beyond access for greater population. When it melts and turns into water, the mountain courses of rivers have geological regimes of very short lengths and abrupt reduction of altitude – they are pretty sights but lack the broader expanse and land flanks for the popular extraction and use like that in the plains. From a purely engineering perspective, mountain cities can never expect to found traditional huge water extraction plants and long distribution networks for supply akin to those of the coastal plants. That is one practical constraint for urbanization of the mountains. I personally feel that it is nature’s own protection against denaturalization.

Secondly, the Himalayan watersheds are broadly of three types. The Glacier fed located between 4000 to 7000 m have run-offs generated from the melt of permanent snow and glaciers. The recent debate about glacial retreat concerns this region.

The glacial melt starts a river from high altitude but only with enough flow to curb out its path – its contribution to the total flux at the estuary is insubstantial.  The snow and rain fed located between 2000 to 4000 m have runoffs generated from this year’s rain and previous years accumulated snow. This is where the river gets its girth and power but unfortunately by now it has almost descended the mountain heights. The rain fed located between 500 to 2000 m have runoffs almost entirely from rain. This is where the river is most noticeable but it’s hardly mountain territory anymore. So climatically and hydrologically, mountain people are not favored by nature to claim the huge bounty of freshwater.

Tower dwellers are not fated to enjoy tower resources.

Or, is it?

I would argue that it is not really true. For ages mountain societies preserved and maintained natural balance between supply and demand and developed traditional institutions and indigenous knowledge of water management. Over the past few decades mountain water needs had been largely ignored and a monoculture growth had been imposed on the mountains neglecting the scientific reality of hydrological cycles in mountains. I shall attempt to bring to discussion the lost art of water management in the mountains in my subsequent articles.

In passing, I shall mention, how apart from a developmental dysfunctionality, climatic variability has come to be a relevant and dangerous aspect of mountain water management. Availability of water in the HKH Mountains is not uniform throughout the year and depends on precipitation, which is highly characterized by seasonality. Precipitation sharply decrease from south (annual mean 1000 to 2000 mm) to north (<200 mm in trans-himalayan regions and large parts of Tibet). Seasonal variations in precipitation and stream-flow in Himalayan basins are very high. Mean monthly discharges of Himalayan rivers in the low flow months before June and after September are generally 10 – 20 times lower than the monsoon months (Chalise et. al., 2001).

The bulk of the people in the mountains have to cope with either ‘too much’ or ‘too little’ water. This has been further worsened by the increased climatic variability induced by Climate Change in recent times. In the higher altitudes, deglaciations are decreasing water availability during dry periods leading to decrease in agriculture and livestock in some parts of Tibet, Ladakh (India) and Mustang (Nepal) and increase in water conflicts. So there is no better time to rethink the water management of the mountains than now.

However, it is not a doomsday story for the mountains. At a time when clean energy with low or zero carbon footprints is emerging as a dire necessity, HKH region is emerging as the new power base for hydro power generation. For example the hydro power potential of Pakistan is estimated to be 20,779 MW and that of Ganga-Brahmaputra-Barak system to the order of 200,000 – 250,000 MW. Nepal alone has a theoretical potential of 83,000 MW which is largely untapped. These can be and should be an economic tread-off of the lost mountain waters for the Mountain States, if they can successfully pull of treaties and co-operation road maps with the lower riprapians and most importantly without getting into the quagmire of ultra-big ultra-ambitious projects. A part of the energy that causes the mountain waters to escape can be gainfully harnessed then.


About Author: Pabitra Mukhopadhyay has written this article for Climate Himalaya ‘s Youth Speak Column. Pabitra is an environment enthusiast and amateur blogger and keen to network with everyone with active interest on issues related to the Himalayas.

Disclaimer: The views expressed in this article are personal and do not necessarily reflect the views of Climate Himalaya Initiative’s team.


Started in year 2010, ‘Climate Himalaya’ initiative has been working on Mountains and Climate linked issues in the Himalayan region of South Asia. In the last five years this knowledge sharing portal has become one of the important references for the governments, research institutions, civil society groups and international agencies, those have work and interest in the Himalayas. The Climate Himalaya team innovates on knowledge sharing, capacity building and climatic adaptation aspects in its focus countries like Bhutan, India, Nepal and Pakistan. Climate Himalaya’s thematic areas of work are mountain ecosystem, water, forest and livelihood. Read>>

Himalayan Nations at Climate Change Conference-CoP21

Over 150 heads of state and government gathered in Paris at the UN climate change conference on Monday, 30 November, the largest group of leaders ever to attend a UN event in a single day. In speech after speech, they provided political leadership and support to reach an ambitious and effective climate change agreement by…

Read more…

2 Comments to “Mountain Waters-Uneasy Questions”

  1. Than Naing says:

    My dear,
    I am a Senior Licensed Engineer at Yangon City Development Committee in Myanmar.
    We founded a small team,Community Engineering Team-Myanmar to work more
    in community development works in Rural Areas that WATSAN and SI works in here.
    I welcome to your fresh water in Nepal.I think and hope to work for community
    water supply and agriculture because I don’t like to product and construct the
    Hydro Power dam real and simply that.We are now seeing the problems about the
    Hydro Power Dam Construction Projects in Asia and World.I say that open,simple,real
    about your fresh water that very valuable for Nepal and all.
    Thanks you and all.
    Your Participant,
    Than Naing
    Community Engineering Team-Myanmar

  2. Pabitra says:

    Dear Than,

    Thank you. My argument, which I hope to elaborate further in my later posts, is meant not only for Nepal but all mountain region in HKH. There is a tendency for us to get sectoral when examining mountain issues – water is no different. But today’s world is connected and mountain issues of water and sanitation cannot be discussed without considering the downstream riprapians. Myanmar is a downstream stakeholder of the Himalayas like Bangladesh and eastern India so it is necessary that water resource allocation is understood by all in the larger perspective – not individually.

    I wish you best in your efforts – we need to reject the western mindset of solving a problem with a big project. I shall try to argue that we (that includes your country too) need community based solutions and organic models of growth.

seo packagespress release submissionsocial bookmarking services